
Danfoss

Gas equalisation

port

None

6 AB208886438990en-000501

50-60 Hz data Model with Liquid injection line only

Models Refrigerant		Nominal tons 60 Hz		l cooling acity	Power input	СОР	E.E.R.	Swept volume	Displace- ment ①	Oil charge	Net weight ②
nemg	jerant	TR	W	Btu/h	W	W/W	Btu/h/W	cm³/rev	m³/h	dm³	kg
	LLZ013	4	2048	6990	2106	0.97	3.32	67.4	11.7	1.62	42
R449A*	LLZ015	5	2605	8890	2642	0.99	3.37	83.5	14.5	1.62	42
	LLZ018	6	3084	10525	2964	1.04	3.55	97.6	17	1.62	43
	LLZ024	8	3846	13126	3542	1.09	3.71	120.2	20.9	2.51	46
	LLZ034	10	5480	18704	4684	1.17	3.99	168.7	29.4	2.51	51
	LLZ013	4	3314	11310	2737	1.21	4.13	67.4	14.2	1.62	42
60 Hz	LLZ015	5	4097	13983	3416	1.20	4.09	83.5	17.5	1.62	42
R448A/	LLZ018	6	4900	16723	3815	1.28	4.38	97.6	20.5	1.62	43
R449A*	LLZ024	8	6046	20636	4580	1.32	4.51	120.2	25.3	2.51	46
	LLZ034	10	8531	29116	5928	1.44	4.91	168.7	35.4	2.51	51

0 Displacement at nominal speed: 2900 rpm at 50 Hz, 3500 rpm at 60 Hz

② Net weight with oil charge

TR: Ton of Refrigeration, Refrigeration, Refrigeration, COP: Coefficient Of Performance Refrigerant: R448A*

Rating condition:

50Hz data: EN12900 LT, Evaporating temperature -35°C, Condensing temperature 40°C, Super Heat 10K, Subcooling 5K.

60Hz data: ARI 540 LT, Evaporating temperature -31.5°C, Condensing temperature 40.5°C, Return Gas Temperature 4.5°C, Subcooling 5K.

All of the compressor performance test after run-in 72h *R449A performance data are nearly identical to R448A performance data

Subject to modification without prior notification.

Data given for motor code 4 compressor, for full data details and capacity tables refer to Online Datasheet Generator: www.danfoss.com/odsg

Model without injection

	Models Refrigerant			l cooling acity	Power input	СОР	E.E.R.	Swept volume	Displace- ment ①	Oil charge	Net weight ②
nenigerant		TR	W	Btu/h	W	W/W	Btu/h/W	cm³/rev	m³/h	dm³	kg
	LLZ013	4	2417	8249	2366	1.02	3.48	67.4	11.7	1.62	42
	LLZ015	5	2937	10024	2776	1.06	3.62	83.5	14.5	1.62	42
50 Hz R404A/R507*	LLZ018	6	3453	11785	3150	1.10	3.75	97.6	17	1.62	43
	LLZ024	8	4411	15055	3957	1.11	3.79	120.2	20.9	2.51	46
	LLZ034	10	6051	20652	5458	1.11	3.79	168.7	29.4	2.51	51
	LLZ013	4	2896	9884	2774	1.04	3.55	67.4	14.2	1.62	42
	LLZ015	5	3552	12123	3307	1.07	3.65	83.5	17.5	1.62	42
60 Hz R404A/R507*	LLZ018	6	4228	14430	3799	1.11	3.79	97.6	20.5	1.62	43
11101/01/01/0507	LLZ024	8	5278	18014	4611	1.14	3.89	120.2	25.3	2.51	46
	LLZ034	10	7404	25270	6157	1.20	4.10	168.7	35.4	2.51	51

0 Displacement at nominal speed: 2900 rpm at 50 Hz, 3500 rpm at 60 Hz

^② Net weight with oil charge

	Standard rating conditions: EN12900
0	Refrigerant: R404A*

Evaporating temperature: -35 °C Condensing temperature: 40 °C

TR: Ton of Refrigeration, EER: Energy Efficiency Ratio COP: Coefficient Of Performance

All of the compressor performance test after run-in 72h *R507 performance data are nearly identical to R404A performance data

Subject to modification without prior notification.

Data given for motor code 4 compressor, for full data details and capacity tables refer to Online Datasheet Generator: www.danfoss.com/odsg

Superheat: 10 K Subcooling: 0 K

<u> Danfoss</u>

Net weight

kg

42

42

43

46

51

42

42

43

46

51

Oil charge

dm

1.62

1.62

1.62

2.51

2.51

1.62

1.62

1.62

2.51

2.51

Superheat: 50 K

Subcooling: 0 K

Model without injection

LLZ013

LLZ015

LLZ018

LLZ024

LLZ034

LLZ013

LLZ015

LLZ018

LLZ024

LLZ034

Models

Refrigerant

50-60 Hz data

50 Hz R448A/

R449A*

60 Hz R448A/

R449A*

PRODUCT INFORMATION

① Displacement at nominal speed: 2900 rpm at 50 Hz, 3500 rpm at 60 Hz ^② Net weight with oil charge

TR: Ton of Refrigeration, EER: Energy Efficiency Ratio COP: Coefficient Of Performance

Refrigerant: R448A*

Rating condition:

50Hz data: EN12900 LT, Evaporating temperature -35°C, Condensing temperature 40°C, Super Heat 10K, Subcooling 5K. 60Hz data: ARI 540 LT, Evaporating temperature -31.5°C, Condensing temperature 40.5°C, Return Gas Temperature 4.5°C, Subcooling 5K.

Nominal cooling

capacity

Btu/h

6990

8890

10525

13126

18704

11310

13983

16723

20636

29116

W

2048

2605

3084

3846

5480

3314

4097

4900

6046

8531

All of the compressor performance test after run-in 72h

*R449A performance data are nearly identical to R448A performance data

Nominal tons 60 Hz

TR

4

5

6

8

10

4

5

6

8

10

Subject to modification without prior notification.

Data given for motor code 4 compressor, for full data details and capacity tables refer to Online Datasheet Generator: www.danfoss.com/odsg

Power input

W

2106

2642

2964

3542

4684

2737

3416

3815

4580

5928

COP

W/W

0.97

0.99

1.04

1.09

1.17

1.21

1.20

1.28

1.32

1.44

E.E.R.

Btu/h/W

3.32

3.37

3.55

3.71

3.99

4.13

4.09

4.38

4.51

4.91

Evaporating temperature: -31.7 °C

Condensing temperature: 40.6 °C

Swept volume

cm³/rev

67.4

83.5

97.6

120.2

168.7

67.4

83.5

97.6

120.2

168.7

Displace

ment ①

m³/h

11.7

14.5

17

20.9

29.4

14.2

17.5

20.5

25.3

35.4

Model without injection

Models Refrigerant		Nominal tons 60 Hz		l cooling acity	Power input	СОР	E.E.R.	Swept volume	Displace- ment ①	Oil charge	Net weight ②
		TR	W	Btu/h	W	W/W	Btu/h/W	cm³/rev	m³/h	dm³	kg
	LLZ013	4	3213	10966	2507	1.28	4.37	67.4	11.7	1.62	42
	LLZ015	5	3898	13304	2949	1.32	4.51	83.5	14.5	1.62	42
50 Hz R404A	LLZ018	6	4583	15642	3346	1.37	4.68	97.6	17	1.62	43
	LLZ024	8	5854	19980	4204	1.39	4.74	120.2	20.9	2.51	46
	LLZ034	10	7991	27273	5772	1.38	4.71	168.7	29.4	2.51	51
	LLZ013	4	3857	13164	2938	1.31	4.47	67.4	14.2	1.62	42
	LLZ015	5	4718	16102	3507	1.35	4.61	83.5	17.5	1.62	42
60 Hz R404A	LLZ018	6	5616	19167	4028	1.39	4.74	97.6	20.5	1.62	43
	LLZ024	8	7011	23928	4889	1.43	4.88	120.2	25.3	2.51	46
	LLZ034	10	9791	33416	6616	1.48	5.05	168.7	35.4	2.51	51

① Displacement at nominal speed: 2900 rpm at 50 Hz, 3500 rpm at 60 Hz ② Net weight with oil charge

TR: Ton of Refrigeration,

EER: Energy Efficiency Ratio

COP: Coefficient Of Performance All of the compressor performance test after run-in 72h

*R507 performance data are nearly identical to R404A performance data

Subject to modification without prior notification.

Data given for motor code 4 compressor, for full data details and capacity tables refer to Online Datasheet Generator: www.danfoss.com/odsg

Standard rating conditions: ARI

Refrigerant: R404A*

50 Hz data Model without injection

Models Refrigerant		Nominal tons 60 Hz	Nominal capa		Power input	СОР	E.E.R.	Swept volume	Displace- ment ①	Oil charge	Net weight ②
		TR	W	Btu/h	W	W/W	Btu/h/W	cm³/rev	m³/h	dm³	kg
	LLZ013	4	2189	7469	1990	1.10	3.75	67.4	11.7	1.62	42
	LLZ015	5	2718	9274	2514	1.08	3.69	83.5	14.5	1.62	42
50 Hz R452A	LLZ018	6	3223	10997	2960	1.09	3.72	97.6	17	1.62	43
11327	LLZ024	8	4000	13648	3609	1.11	3.78	120.2	20.9	2.51	46
	LLZ034	10	5865	20011	5082	1.15	3.94	168.7	29.4	2.51	51

0 Displacement at nominal speed: 2900 rpm at 50 Hz

All of the compressor performance test after run-in 72h Subject to modification without prior notification.

> Nominal tons 60 Hz

> > TR

4

5

6

8

10

② Net weight with oil charge

EER: Energy Efficiency Ratio COP: Coefficient Of Performance

Model without injection

LLZ013

LLZ015

LLZ018

LLZ024

LLZ034

Models

Refrigerant

TR: Ton of Refrigeration,

60 Hz data

60 Hz

R452A

Standard rating conditions: EN12900 Refrigerant: R452A

Nominal cooling

capacity

Btu/h

11383

14289

16788

20945

29065

W

3335

4187

4919

6137

8516

Data given for motor code 4 compressor, for full data details and capacity tables refer to Online Datasheet Generator: www.danfoss.com/odsg

Power

input

W

2886

3476

3952

4829

6595

COP

W/W

1.16

1.20

1.24

1.27

1.29

Evaporating temperature: -35 °C Condensing temperature: 40 °C

E.E.R.

Btu/h/W

Superheat: 10 K Subcooling: 0 K

PRODUCT INFORMATION

SYSTEM DESIGN

INTEGRATION INTO SYSTEM

ORDERING INFORMATION

GENERAL INFORMATION

Net weight

kα

42

42

43

46

51

3.94	67.4	14.2	1.62
4.11	83.5	17.5	1.62
4.25	97.6	20.5	1.62
4.34	120.2	25.3	2.51
4.41	168.7	35.4	2.51

Displace

ment ①

m³/h

Swept

volume

cm³/rev

0 Displacement at nominal speed: 3500 rpm at 60 Hz

② Net weight with oil charge

TR: Ton of Refrigeration,

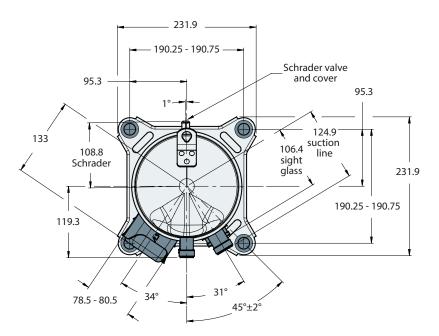
Standard rating conditions: ARI 540 LT standard tio Refrigerant: R452A Evaporating temperature: -31.5 °C Condensing temperature: 40.5 °C Return Gas Temperature: 4.5 °C Subcooling: 0 K

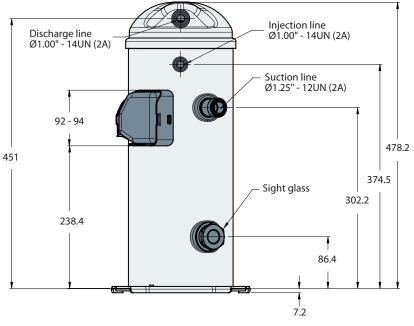
Oil charge

dm

EER: Energy Efficiency Ratio COP: Coefficient Of Performance

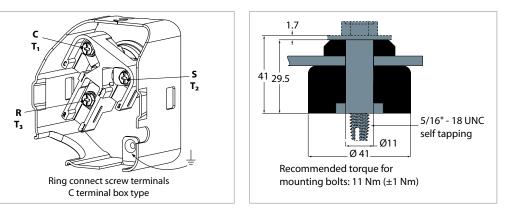
All of the compressor performance test after run-in 72h


Subject to modification without prior notification.


Data given for motor code 4 compressor, for full data details and capacity tables refer to Online Datasheet Generator: www.danfoss.com/odsg

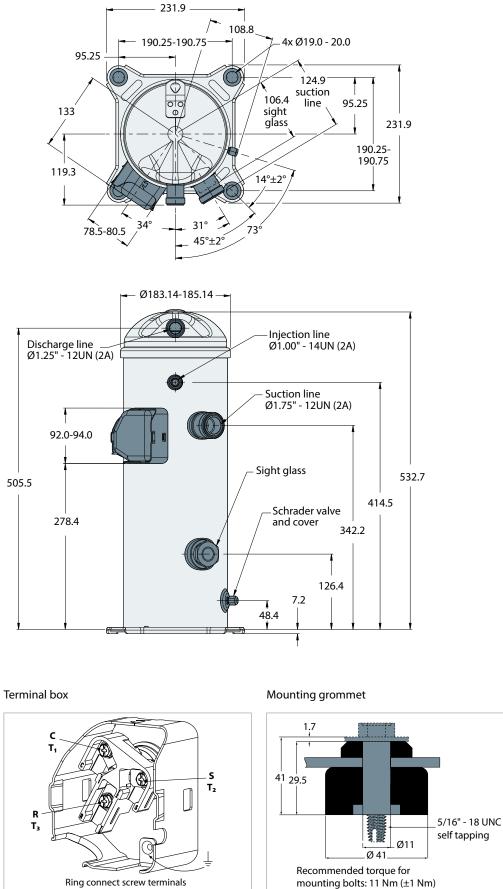
<u>Danfośś</u>

Dimensions


Single compressors LLZ013-015-018

Terminal box

Mounting grommet

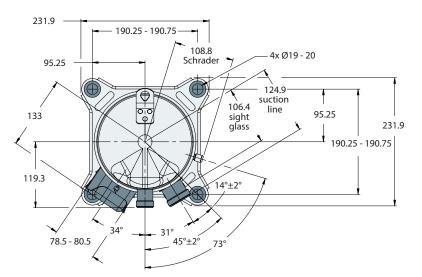


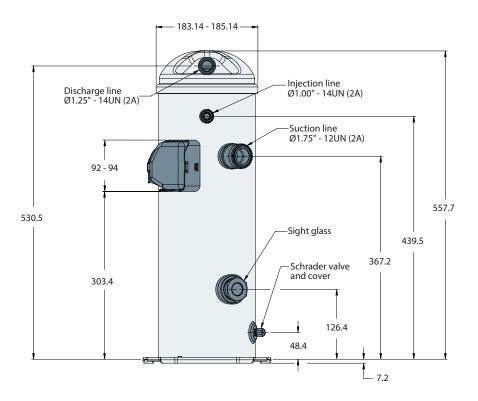
GENERAL INFORMATION

PRODUCT INFORMATION

SYSTEM DESIGN

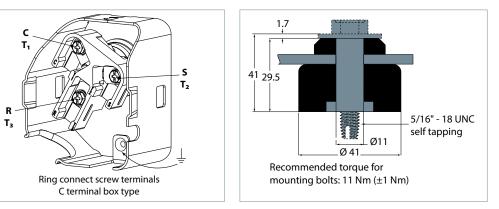
Single compressors LLZ024


ig connect screw terminals C terminal box type


<u>Danfośś</u>

Dimensions

Single compressors LLZ034



Terminal box

Mounting grommet

GENERAL INFORMATION

PRODUCT INFORMATION

SYSTEM DESIGN

INTEGRATION INTO SYSTEM

Oil sight glass	LLZ scroll compressors come equipped with a threaded oil sight glass with 1"1/8 - 18 UNEF connection. It can be used for a visual check of the oil amount and condition or it may be replaced by an accessory oil management device. The oil level must be visible in the sight glass during operation.								
Schrader	The oil fill and drain connection and gauge port is a 1/4" male flare connector incorporating a schrader valve.								
Suction and discharge connections	LLZ scroll compressors are factory delivered with rotolock connections only.								
connections	Comprossor Models	Rotolock Sizes							
	Compressor Models	Suction Fitting (in)	Discharge Fitting (in)	Injection Fitting (in)					
	LZL013	1"1/4	1"	1"					
	LLZ015	1"1/4	1"	1"					
	LLZ018	1"1/4	1"	1"					
	LLZ024	1"3/4	1"1/4	1"					
	LLZ034	1"3/4	1"1/4	1"					

<u>Janfoss</u>

Electrical data, connections and wiring

Motor voltage Danfoss scroll compressors LLZ are available in motor voltage as listed below. Code 2 Code 4 Motor voltage code Code 9 **GENERAL INFORMATION** Nominal voltage 200-220V - 3ph 380-415V - 3ph 50 Hz Voltage range 180-242V 342-457V 208-230V - 3ph 460V - 3ph Nominal voltage 380V - 3ph 60 Hz 414-506V Voltage range 187-253V 342-418V The maximum allowable voltage imbalance is overheating and possible motor damage. Voltage imbalance is given by the formula: 2%. Voltage imbalance causes high amperage over one or several phases, which in turn leads to **PRODUCT INFORMATION** | Vavg - V1-2 | + | Vavg - V1-3 | + | Vavg - V2-3 | % voltage x 100 imbalance 2 x Vavg Vavg = Mean voltage of phases 1, 2, 3. V1-3 = Voltage between phases 1 and 3. V1-2 = Voltage between phases 1 and 2. V2-3 = Voltage between phases 2 and 3. Wiring connections Danfoss scroll compressors LLZ will only R compress gas while rotating counter-clockwise С (when viewed from the compressor top). T. Three-phase motors will start and run in either direction, depending on the phase angles of the supplied power. Care must be taken during S SYSTEM DESIGN T₂ installation to ensure that the compressor operates in the correct direction (see "Phase R sequence and reverse rotation protection"). T, The drawings hereafter show electrical terminal labelling and should be used as a reference when wiring the compressor. For three phase Ring connect screw terminals applications, the terminals are labelled T1, T2, and C terminal box type T3.. For single-phase applications the terminals are labelled C (common), S (start), and R (run). INTEGRATION INTO SYSTEM **Terminal cover mounting** The terminal cover and gasket should be installed that the two outside tabs of the cover engage the prior to operation of the compressor. Respect the terminal box. "up" marking on gasket and cover and ensure **Terminal cover removal** push **ORDERING INFORMATION** push push

14 AB208886438990en-000501

IP rating

The compressor terminal box IP rating according to IEC 529 is IP22 for all models. IP ratings is only valid when correctly sized cable glands of the IP rating is applied.

First numeral, level of protection against contact and foreign objects

2 - Protection against object size over 12.5 mm (fingers of similar)

Second numeral, level of protection against water

2 - Protection against dripping water when tilted up to 15°

The IP rating can be upgraded to IP54 with an accessory kit (see section "Accessories").

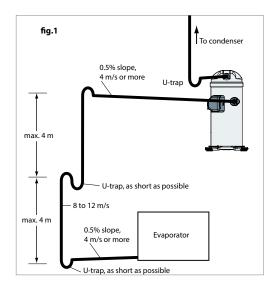
Three phase electrical characteristics

Compressor model		LRA	МСС	Max. operating current	Max. operating current with economizer	Winding resistance
		A	А	A	А	Ω
	LLZ013	123.0	25.0	16.4	20.0	0.60
Motor voltage code 2	LLZ015	180.0	29.0	18.9	23.0	0.50
200-220 V / 3 / 50Hz 208-230 V / 3 / 60Hz	LLZ018	184.0	31.0	24.1	29.4	0.43
	LLZ024	190.0	40.0	28.4	34.7	0.37
	LLZ034	250.0	50.0	42.4	44.7	0.29
	LLZ013	62.0	12.0	8.0	9.8	2.30
Motor voltage code 4	LLZ015	88.5	15.0	9.8	12.0	1.69
380-415/3ph/50Hz	LLZ018	90.0	16.0	11.8	14.4	1.61
460V/3ph/60Hz	LLZ024	95.0	21.0	15.0	18.3	1.48
	LLZ034	150.0	26.0	19.1	22.7	0.84
	LLZ013	81.0	14.0	9.4	11.8	1.49
	LLZ015	81.0	17.0	11.3	14.2	1.49
Motor voltage code 9 380V/3ph/60Hz	LLZ018	106.0	20.0	13.7	16.5	1.13
300v/3pil/00Hz	LLZ024	135.0	21.0	17.1	19.4	0.93
	LLZ034	155.0	29.6	22.9	25.5	0.63

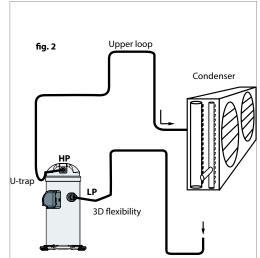
Electrical data, connections and wiring

<u>Danfoss</u>

LRA (Locked Rotor Amp)	Locked Rotor Amp value is the higher average current as measured on mechanically blocked compressor tested under nominal voltage. The LRA value can be used as rough estimation for	the starting current. However in most cases, the real starting current will be lower. A soft starter can be applied to reduce starting current.
MCC (Maximum Continuous Current)	The MCC is the current at which the motor protection trips under maximum load and low voltage conditions. This MCC value is the maximum at which the compressor can be operated in transient conditions and out of	the application envelope. Above this value, the overload or external electronic module will cut- out the compressor to protect the motor.
Max. operating Current	The max. operating current is the current when the compressors operate at maximum load conditions and 10% below nominal voltage. Max Oper. A can be used to select cables and contactors. In normal operation, the compressor current consumption is always less than the Max	Oper. A. value. When using the Max Operating Current to define cables and contactors, a tolerance of 5% need to be taken into account.
Winding resistance	Winding resistance is the resistance between phases at 25°C (resistance value +/- 7%). Winding resistance is generally low and it requires adapted tools for precise measurement. Use a digital ohm-meter, a "4 wires" method and measure under stabilised ambient temperature. Winding resistance varies strongly with winding temperature. If the compressor is stabilised at a different value than 25°C, the measured resistance must be corrected using the following	formula: $R_{tamb} = R_{25^{\circ}C} \frac{a + t_{amb}}{a + t_{25^{\circ}C}}$ $t_{25^{\circ}C} : reference temperature = 25^{\circ}C$ $t_{amb}: temperature during measurement (°C)$ $R_{25^{\circ}C}: winding resistance at 25^{\circ}C$ $R_{amb}: winding resistance at tamb$ Coefficient a = 234.5
Motor protection	Danfoss scroll compressors LLZ are equipped with an internal line break protector mounted on the motor windings. The protector is an automatic reset device, containing a snap action bimetal switch.	Motor current under a variety of fault conditions, such as failure to start, running overload, and fan failure. If the internal overload protector trips out, it must
	Internal protectors respond to over-current and overheating. They are designed to interrupt	cool down to about 60°C to reset. Depending on ambient temperature, this may take up to several hours.
Phase sequence and reverse rotation protection	The compressor will only operate properly in a single direction. Use a phase meter to establish the phase orders and connect line phases L1, L2 and L3 to terminals T1, T2 and T3, respectively. For three-phase compressors, the motor will run equally well in both directions. Reverse rotation results in excessive noise; no pressure differential	service technician should be present at initial start-up to verify that supply power is properly phased and that compressor and auxiliaries are rotating in the correct direction. Phase monitors are required for LLZ compressors. The selected phase monitor should lock out the
1	between suction and discharge; and suction line warming rather than immediate cooling. A	compressor from operation in reverse.


	LLZ scroll compressors comply with the approvals and certificates.	followin	g Certificates are listed on the product datasheets: http://www.danfoss.com/odsg		
	CE 0062 or CE 0038 or CE0871 (European Directive)	CE	All LLZ models		
	UL (Underwriters Laboratories)	c 91 °us	All LLZ models		
	Other approvals / certificates		Contact Danfoss		
Pressure equipment lirective 2014/68/EU	Declaste				
airective 2014/08/EU	Products	LLZ013-034			
	Refrigerating fluids Category PED		Group 2		
	Evaluation module		no scope		
Low voltage directive 2014/35/EU	Products		LLZ013-034		
2014/33/EU	Declaration of conformity ref. Low voltage directive 2014/35/EU	Declaration of conformity			
Machines directive	Products		LLZ013-034		
2006/42/EC	Manufacturer's declaration of incorporatio Machines Directive 2006/42/EC	on ref.	Contact Danfoss		
nternal free volume					
	Products		Internal free volume at LP side without oil (litre)		
	LLZ013-015-018		4.74		
	LLZ024-034		5.95		

General requirements


Proper piping practices should be employed to:

1. Ensure adequate oil return, even under minimum load conditions (refrigerant speed, piping slopes...). For validation tests see section "Manage oil in the circuit". 2. Avoid condensed liquid refrigerant from draining back to the compressor when stopped (discharge piping upper loop). For validation tests see section "Manage off cycle migration".

General recommendations are described in the figures below:

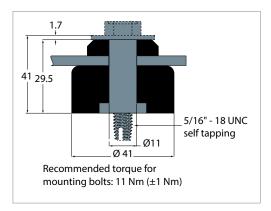
3. Piping should be designed with adequate three-dimensional flexibility to avoid excess vibration. It should not be in contact with the surrounding structure, unless a proper tubing

mount has been installed. For more information on noise and vibration, see section on: "Sound and vibration management".

Danfoss

GENERAL INFORMATION

PRODUCT INFORMATION


SYSTEM DESIGN

INTEGRATION INTO SYSTEM

ORDERING INFORMATION

General requirements	Compressors used in single application must be mounted with flexible grommets	and the manifold assembly must be mounted with flexible grommets onto frame.
	Compressors used in parallel application must be mounted with rigid mounting spacers onto rails	During operation, maximum inclination from the vertical plane must not exceed 3 degrees.
Single compressor requirements	LLZ compressors are delivered with flexible grommets, accessory mounting kit.	The grommets must be compressed until contact between the flat washer and the steel mounting

Mounting grommet

act ıg sleeve is established. The required bolt size for the LLZ013-034 compressors is M8*45mm. This bolt must be tightened to a torque of 11 Nm.

Compressor sound

radiation

GENERAL INFORMATION

Typical sounds and vibrations in systems can be broken down into the following three categories: • Sound radiation (through air)

Mechanical vibrations (through parts and structure)

For sound radiating from the compressors, the emission path is air and the sound waves are travelling directly from the machine in all directions.

Sound levels are as follows:

• For compressors running alone:

	50	Hz	60	Acoustic hood	
Compressor model	Sound power dB(A)	Attenuation dBA ①	Sound power dB(A)	Attenuation dBA ①	code number
LLZ013	78	8	80	8	120Z5052
LLZ015	80	8	83	8	120Z5052
LLZ018	83	10	84	10	120Z5052
LLZ024	85	10	86	10	120Z5053
LLZ034	85	8	86	8	120Z5055

Sound power and attenuation are given at ARI LBP conditions, measured in free space Attenuation given with acoustic hood

Maximum sound is +5dBA

LLZ scroll compressors have a unique discharge valve design that minimizes stopping noise. This results in very low shutdown sound. Note: During compressor shut down, a short reverse rotation sound is generated. The duration of this sound depends on pressure difference at shut down and should be less than 3 seconds. This phenomenon has no impact on compressor reliability.

Mitigations methods:

We can consider two means to reduce compressors sound radiations:

1. Acoustic hoods are quick and easy to install and do not increase the overall size of the compressors to a great extent. Acoustic hoods are available from Danfoss as accessories. Refer to table above for sound levels, attenuation and code numbers.

2. Use of sound-insulation materials on the inside of unit panels is also an effective means to reduce radiation.

 ms can be
 Gas pulsation (through refrigerant)
 categories: The following sections focus on the causes and methods of mitigation for each of the above s and sources.

GENERAL INFORMATION

PRODUCT INFORMATION

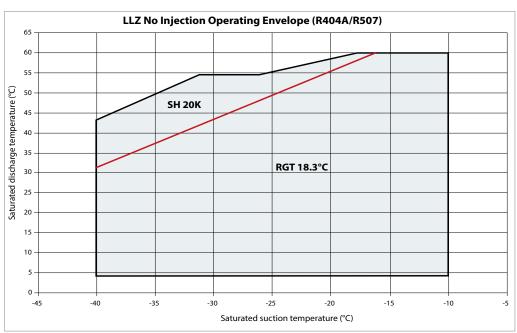
SYSTEM DESIGN

INTEGRATION INTO SYSTEM

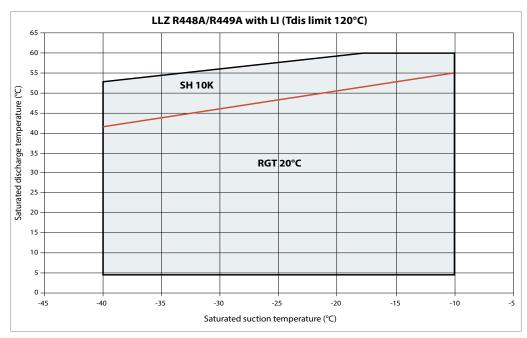
Mechanical vibrations	Vibration isolation constitutes the primary method for controlling structural vibration. LLZ scroll compressors are designed to produce minimal vibration during operations. The use of rubber isolators on the compressor base plate or on the frame of a manifolded unit is very effective in reducing vibration being transmitted from the compressor(s) to the unit. Rubber grommets are supplied with all LLZ scroll compressors. Once the supplied rubber grommets have been properly mounted, vibration transmitted from the compressor base plate to the unit are held to a strict minimum. In addition, it is	extremely important that the frame supporting the mounted compressor be of sufficient mass and stiffness to help dampen any residual vibration potentially transmitted to the frame. The tubing should be designed so as to both reduce the transmission of vibrations to other structures and withstand vibration without incurring any damage. Tubing should also be designed for three-dimensional flexibility. For more information on piping design, please see the section entitled "Essential piping design considerations".
Gas pulsation	The LLZ scroll compressors have been designed and tested to ensure that gas pulsation has been minimized for the most commonly encountered refrigeration pressure ratio. On installations where the pressure ratio lies beyond the typical range, testing should be conducted under all expected conditions and operating configurations to ensure that minimum gas pulsation is present.	Mitigations methods: If an unacceptable level is identified, a discharge muffler with the appropriate resonant volume and mass can be installed.

Danfoss

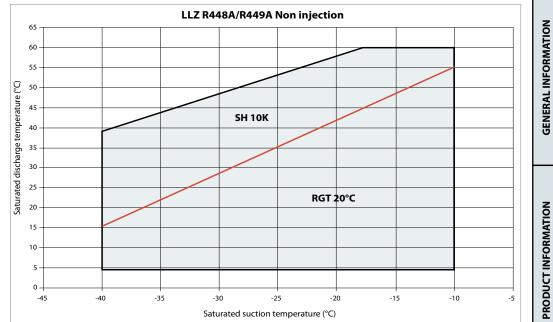
Manage operating envelope


Requirement

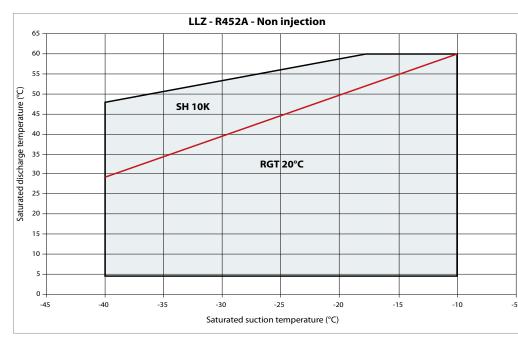
The operating envelope for LLZ scroll compressors is given in the figures below and guarantees reliable operations of the compressor for steady-state.


Steady-state operation envelope is valid for a suction superheat high than 5K

LLZ compressor operating envelops are different with refrigerant and with/with out injection. The details are as following.


LLZ Compressor with R404A/R507, Non Injection

LLZ Compressor with R448A/R449A with LI



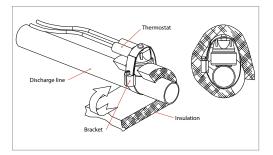
LLZ Compressor with R448A/R449A Non injection

LLZ Compressor with R452A, Non injection

Manage operating envelope

Pressure settings		R404A/R507	R448A/R449A	R452A
Working range high side	bar(g)	5.9-27.7	4.9-26.0	5.5-27.3
Working range low side	bar(g)	0.3-3.3	0.0-2.6	0.2-3.0
Maximum high pressure safety switch setting	bar(g)	29.7	28	29.3
Minimum low pressure safety switch setting	bar(g)	0.2	0.0	0.1
Minimum low pressure pump-down switch setting	bar(g)	0.4	0.0	0.3

LP and HP safety switches must never be bypassed nor delayed and must stop all the compressors. When LP safety switch worked, limit the number of auto-restart to maximum 5 times within 12 hours.


HP safety switch must be manual reset

Depending on application operating envelope, you must define HP and LP limits within operating envelope and pressure setting table above.

For LLZ compressors, the external Discharge Gas Temperature protection (DGT) is required if the high and low pressure switch settings do not protect the compressor against operations beyond its specific application envelope.

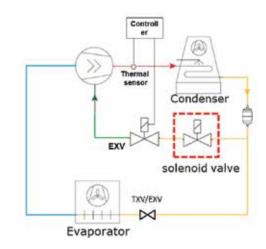
The discharge gas thermostat accessory kit (code 7750009) includes all components required for installation as shown on the right. DGT installation must respect below requirements: • The thermostat must be attached to the discharge line within 150 mm from the compressor discharge port and must be thermally insulated and tightly fixed on the pipe.

• The DGT should be set to open at a discharge gas temperature of 135°C.

Evaluate the risk

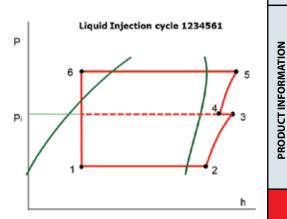
We consider two types of operating envelope management:

Basic: • HP and LP switch • MOP (Max Operating Pressure) ensured by expansion device • Condensing pressure control • DGT	Advanced: • HP and LP sensor • Operating envelope limits (permanent and transient) integrated into control logic • DGT
HP switch setting DGT Condensing pressure control	No additional test are required


ORDERING INFORMATION

Theory of Liquid injection cycle

The below schematic shows a system configuration with a liquid injection cycle (1234561). The liquid refrigerant is injected into scroll pocket, the injected liquid will flash and absorb heat from compressed gas and scroll set. Then the liquid will cool the discharge gas, keep discharge gas temperature within safe limits.


Liquid injection is achieved by an expansion valve. The valve can regulate the injection mass flow according to discharge temperature.

An additional solenoid valve has to be installed, it should close when compressor stops to prevent from liquid slug.

To prevent a partial or full blockage at the injection port caused through shavings, foreign bodies etc., a filter dryer should be installed in the liquid line prior to the injection valve inlet.

Injection is disabled during defrost cycle or unit startup period.

GENERAL INFORMATION

<u>Danfoss</u>

Manage superheat

ATION		the compressor flood back occur	peration, refrigerant enters as a superheated vapor. Liquid rs when a part of the refrigerant npressor is still in liquid state.	Liquid flood back can cause oil dilution and, in extreme situations lead to liquid slugging that can damage compression parts.
GENERAL INFORMATION	Requirement	Discharge supe	onditions, eat must be higher than 5K erheat must be higher than 15K nust be higher than 10K	In transient conditions, • Discharge superheat must be higher than 5K • Oil superheat must be higher than 10K
		Discharge temp	erature sensor must be placed	
MATION			ge fitting and be insulated.	
PRODUCT INFORMATION		Oil temperature sensor must be placed between oil sight glass and compressor baseplate and be insulated.		
PROD	Evaluate the risk	charge and the a	elow in relation with the system application to quickly evaluate ential tests to perform.	
			BELOW charge limit	ABOVE charge limit
			No test or additional safeties requ	ired Liquid flood back test
IGN		Charge limit is defi	ned in table below:	
SYSTEM DESIGN			Models	Refrigerant charge limit (kg)
TEM		Single	LLZ013-015-018	4.54
SYS		Single	LLZ024-034	7.26

Test, criteria and solutions

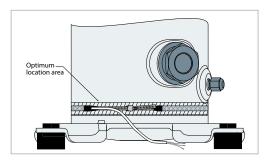
Test	Purpose	Test condition	Pass criteria	Solutions
Liquid flood back test	Steady-state	Liquid flood back testing must be carried out under expansion valve threshold operating conditions: a high pressure ratio and minimum evaporator load (A).	Oil superheat>10K Steady-state discharge superheat>15K	1. Check expansion valve selection and setting 2. Add a suction accumulator*
	Transient	Tests must be carried out with most unfavorable conditions : • fan staging, • compressor staging •	Oil superheat>10K Transient discharge superheat >5K	 Check expansion valve selection and setting. For Thermostatic expansion valve (TXV) check bulb position For Electronic expansion valve (EXV) check measurement chain and PID Add a suction accumulator*
Defrost test	Check liquid floodback during defrost cycle	Defrost test must be carried out in the most unfavorable condition (at 0°C evaporating temperature)	Oil superheat>10K Transient discharge superheat >5K	In refrigeration system, there are different defrost method, such as electric method. (for more details see "Control Logic").

*Suction accumulator offers protection by trapping the liquid refrigerant upstream from the compressor. The accumulator should be sized at least 50 % of the total system charge. Suction accumulator dimensions can impact oil return (gas velocity, oil return hole size...), therefore oil return has to be checked according to section "Manage oil in the circuit".

	 when the comp part of the instal condenses in the 	oressor is located at the coldest llation, refrigerant vapor e compressor.	refrigera lubricati this lead	ne compressor starts running again, the ant diluted in the oil generates poor ion conditions. In extreme situations, Is to liquid slugging that can damage ssion parts.
Requirement	must not overpa	d refrigerant in the compressors ass the charge limit (refer to e in section "Manage superheat")		
Evaluate the risk	charge (refer to o	•		define necessary safeties to implement to perform:
		BELOW CHARGE LIMIT		ABOVE CHARGE LIMIT
	Non split	No test or additional safeties requir	red	 Belt type crankcase heater * Migration test (External Non-Return Valve)
	Split	Since each installation is unique, no the following safeties are required: • Belt type crankcase heater * • Liquid Line Solenoid Valve**+ pur	:	fully evaluate off-cycle migration, therefore

Test, criteria and solutions

Test N°	Purpose	Test condition	Pass criteria	Solutions
Migration test	Check that there is no migration of refrigerant into the compressor (either liquid or vapour condensating)	Energize CCH*. Stabilize the non-running system at a pressure equivalent to 5°C . Raise the system pressure equivalent to 20°C. When saturated condensing temperature reaches 20°C then start the unit.	When all compressors are idle: • Check in liquid line sight glass that there is no liquid refrigerant transfer • Oil superheat must be >10K during off-cycle After compressors has started: • Oil superheat must remain >10K	 Check bulb position, tightness of expansion device, add LLSV** add pump down cycle*** Check crankcase heater efficiency


Oil temperature sensor must be placed between oil sight glass and compressor baseplate and be insulated.

*Crankcase heater (CCH)

The blet type sump heaters are designed to protect the compressor against off-cycle migration of refrigerant.

Additional heater power or thermal insulation might be needed in case of ambient temperature below -5°C and a wind speed above 5m/second. The heater must be energized whenever all the compressors are off.

Crankcase heater accessories are available from Danfoss (see section "Accessories").

It is recommended that the heater be turned on for a minimum of 8 hours prior to starting the compressor.

**Liquid line solenoid valve (LLSV) A LLSV is used to isolate the liquid charge on the condenser side, thereby preventing against charge transfer to the compressor during off -cycles. The quantity of refrigerant on the low-pressure side of the system can be further reduced by using a pump-down cycle in association with the LLSV.

***Pump-down cycle

By decreasing pressure in the sump, pump down:

evacuates refrigerant from oil

• set the sump saturating pressure much lower than ambiance temperature and due to that, avoid refrigerant condensation in the compressor.

Pump-down must be set higher than minimum pressure switch setting for pump-down (see section "manage operation envelop").

For more details on pump-down cycle see section "Control Logic".

Danfoss

Re-start conditions

Safety control logic requirements

-	
~	
0	
~	
-	
5	
<	
~	
5	
9	
<u>ш</u>	
~	
<u> </u>	
4	
~	
ш	
~	
ш	
U	
-	

	Value	Time	Value	Time
HP switch				Manual reset
LP safety switch	See Pressure settings table from section "Manage operating envelope"		Conditions back to normal. Switch closed again	Maximum 5 auto reset during a period of 12 hours, then manual reset.
Electronic module (Motor protection, DGT)	Contact M1-M2 opened			Maximum 5 auto reset during a period of 12 hours, then manual reset.
Cycle rate limit requirements	Danfoss requires a minimum compressor running time of 2 minutes to ensure proper oil return and sufficient motor cooling. Additionally, compressor service life is based on a maximum of 12 starts per hour.		d a three-minute (180- s recommended.	ee these 2 requirements, sec) time out is
Oil management logic recommendations	In some cases, oil management can be enhanced by control logic: • If oil return test failed, a function can be integrated in control to run all compressors simultaneously during one minute every hour in order to boost oil return. Time and delay can be fine-tuned by oil return test N°1 in section "Manage oil in the circuit". During oil boost, pay special attention to superheat management to avoid liquid flood back and foaming.		unbalance appears, t in control to stop all minute every two ho between compresso fine-tuned by Oil bal "Manage oil in the cir	hen a function can be compressors during one urs in order to balance oil rs. Time and delay can be ancing test N°2 in section
Defrost logic recommendations	are different defrost heating defrost, hot defrost etc. For the sy bypass or reversible accumulator is neces	em applications, there methods, such as electric gas bypass defrost, reversib ystems which use hot gas defrost method, suction ssary as a result of the antial quantity of liquid g in the evaporator.	This liquid refrigerant can then return to the compressor, either flooding the sump or as a dynamic liquid slug when the cycle switch back to normal cooling operations. Sustained and repeated liquid slugging and flooding can seriously impair the oil's ability to lubricate the compressor bearings. In such cases a suction accumulator is a must.	

Tripping conditions

Danfoss

Pump-down logic recommendations

Pump-down cycle: Once the system has reached its set point and is about to shut off, the LLSV on the liquid line closes. The compressor then pumps the majority of the refrigerant charge into the high pressure side before the system stops on the low pressure pump-down switch. This step reduces the amount of charge on the low side in order to prevent off-cycle migration. A pump-down cycle represents one of the most effective ways to protect against the off-cycle migration of refrigerant; however it is only convenient to apply on application with thermostatic control. Rack application with pressostatic control can use timer delay to empty the evaporators before the stop. Time should be carefully set to not interfere with the low safety pressure switch.

For low pressure pump-down switch settings, refer to section "High and low pressure protection". For suggested wiring diagrams, please see section "Wiring diagram". Under certain conditions, the internal valve may not completely seal, and due to the refrigerant back flow the compressor might restart during pump-down applications. Repeated short cycling can result in a compressor breakdown. It is recommended to install an external magnetic check valve (such as Danfoss Part No. 120Z5046) close to the compressor's discharge connector so the discharge volume is minimized.

A magnetic check valve is recommended for this as it offers the best solution regarding minimal required and maximal pressure drop over the wide application envelope of the LLZ scroll compressors. If a Danfoss NRV check valve is applied it has to be carefully selected for the specific operation conditions of the individual system.

Tests for pump down cycle approval:

- As the pump-down switch setting is inside the application envelope, tests should be carried out to check unexpected cut-out during transient conditions (i.e. defrost - cold starting). When unwanted cut-outs occur, the low pressure pump-down switch can be delayed. In this case a low pressure safety switch without any delay timer is mandatory.
- While the thermostat is off, the number of pressure switch resets should be limited to avoid short cycling of the compressor. Use dedicated wiring and an additional relay which allows for one shot pump-down.

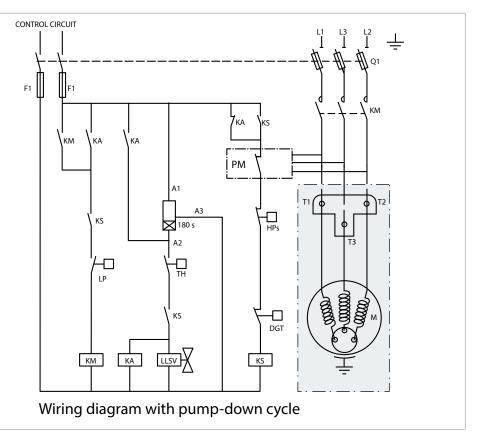
Janfoss

Wiring information

GENERAL INFORMATION

PRODUCT INFORMATION

SYSTEM DESIGN


Requirements:

- An additional external overload protection is still advisable for either alarm or manual reset. For overload setting, take the max current you can face on the application and add 10%. Setting must always be lower than Max Operating Current (see table...)
- HP safety switch and DGT must be wired in the safety chain. Other safety devices such as LP can be either hardware or software managed.
- Provide separate electrical supply for the heaters so that they remain energized even when the machine is out of service (e.g. seasonal shutdown).

The wiring diagrams below are examples for a safe and reliable compressor wiring:

The wiring diagrams below are examples for a safe and reliable compressor wiring:

Compressor model LLZ 013 - 015 - 018 - 024 - 034

For LLZ phase monitors are mandatory. The selected phase monitor should lock out the compressor from operation in reverse.

Control device......TH Optional short cycle timer (3 mins) .180 s Control relay......KA Liquid Line Solenoid valve.....LLSV Compressor contactor.....KM Phase monitor....PM Safety lock out relay......PM Safety lock out relay.....KS Pump-down control low pressure switch.....LP High pressure safety switch.....LP High pressure safety switch.....LP Fused disconnect....Q1 Fuses.......F1 Compressor motor....M Discharge gas thermostat.....DGT

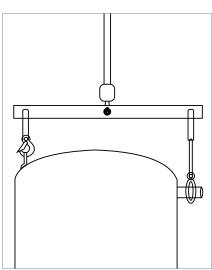
Note:

	Excessive air and moisture • can increase condensing pressure and cause excessively high discharge temperatures. • can create acid giving rise to copper platting. • can destroy the lubricating properties of the oil.	All these phenomena can reduce service life and cause mechanical and electrical compressor failure.
Requirements	LLZ compressors are delivered with < 100 ppm moisture level.	At the time of commissioning, system moisture content may be up to 100 ppm. During operation, the filter drier must reduce this to a level between 20 and 50 ppm.
Solutions	To achieve this requirement, a properly sized and type of drier is required. Important selection criteria's include: • driers water content capacity, • system refrigeration capacity, • system refrigerant charge.	For new installations with LLZ compressors with polyolester oil, Danfoss recommends using the Danfoss DML (100% molecular sieve) solid core filter drier.

Assembly line procedure

NO	Compressor storage	Store the compressor not exposed to rain, corrosive or flammable atmosphere between -35°C and 70°C when charged with nitrogen.	
	Compressor holding charge	Each compressor is shipped with a nominal dry nitrogen holding charge between 0.4 and 0.7 bar and is sealed with elastomer plugs.	• Remove the suction plug first and the discharge plug afterwards to avoid discharge check valve gets stuck in open position.
GENERAL		 Respect the following sequence: Remove the nitrogen holding charge via the suction schrader valve to avoid an oil mist blow out. 	An opened compressor must not be exposed to air for more than 20 minutes to avoid moisture is captured by the POE oil.

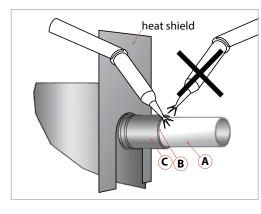
Handling


Compressor handling

LLZ Compressors are provided with a lifting lug. This lug should always be used to lift the compressor.

Once the compressor is installed, the lifting lug should never be used to lift the complete

installation. The compressor must be handled with caution in the vertical position, with a maximum inclination of 15° from vertical.


Piping assembly

Good practices for piping assembly is a pre-requisite to ensure compressor service life.

System	cleanliness

Circuit contamination possible cause:	Requirement:
Brazing and welding oxides	During brazing, flow nitrogen through the system
Filings and particles from the removal of burrs in pipe-work	Remove any particles and burrs generated by tube cutting and hole drilling
Moisture and air	Use only clean and dehydrated refrigeration grade copper tubing Opened compressor must not be exposed to air more than 20 minutes to avoid moisture captured by POE oil
Brazing procedure:Brazing operations must be performed by qualified personnel.Make sure that no electrical wiring is connected to the compressor.	 Use brazing rod with a minimum of 5% silver content. It is recommended to use double-tipped torch using acetylene to ensure a uniform heating of connection.

- To prevent compressor shell and electrical box overheating, use a heat shield and/or a heat-absorbent compound.
- Clean up connections with degreasing agent
- Flow nitrogen through the compressor.
- Use flux in paste or flux coated brazing rod.
- For discharge connections brazing time should be less than 2 minutes to avoid NRVI damages if any.
- To enhance the resistance to rust, a varnish on the connection is recommended.

R Before eventual un-brazing of the compressor or any system component, the refrigerant charge must be removed.

System pressure test and leak detection

The compressor has been strength tested and leak proof tested (<3g/year) at the factory. For system tests:

- Always use an inert gas such as Nitrogen or Helium.
- Pressurize the system on HP side first then LP side.
- Do not exceed the following pressures:

Maximum compressor test pressures	
Maximum compressor test pressure high side (HP)	31.1 bar (g)
Maximum compressor test pressure low side (LP)	31.1 bar (g)

<u>Danfoss</u>

Assembly line procedure

	Vacuum evacuation and	Doguisamonto	Recommendations:
GENERAL INFORMATION	Refrigerant charging	 Requirements: Never use the compressor to evacuate the system. Connect a vacuum pump to both the LP and HP sides. Evacuate the system to a pressure of 500 µm Hg (0.67 mbar) absolute. 	 Energized heaters improve moisture removal. Alternate vacuum phases and break vacuum. with Nitrogen to improve moisture removal. For more detailed information see "Vacuum pump-down and dehydration procedure" TI-026-0302.
PRODUCT INFORMATION		 Initial charge: For the initial charge, the compressor must not run. Charge refrigerant as close as possible to the nominal system charge. This initial charging operation must be done in liquid phase between the condenser outlet and the filter drier. 	 If needed, a complement of charge can be done: In liquid phase while compressor is running by slowly throttling liquid in. On the low pressure side, as far away as possible from the compressor suction connection. Never bypass safety low pressure switch. For more detailed information see "Recommended refrigerant system charging practice" FRCC.EN.050.
SYSTEM DESIGN	Dielectric strength and insulation resistance tests	The tests are performed on each compressor at the factory between each phase and ground. • Dielectric strength test is done with a high potential voltage (hi-pot) of 2Un +1000V AC at least, and leakage current must be less than 5 mA. Additional tests of this type are not recommended as it may reduce motor lifetime. Nevertheless, if such a test is necessary, it must be performed at a lower voltage.	 Insulation resistance is measured with a 500 V DC megohm tester and must be higher than 1 megohm. The presence of refrigerant around the motor windings will result in lower resistance values to ground and higher leakage current readings. Such readings do not indicate a faulty compressor. To prevent this, the system can be first operated briefly to distribute refrigerant.
rem		Do not use a megohm meter nor apply power to the compressor while it is under vacuum as this may cause internal damage.	

GENERAL INFORMATION

PRODUCT INFORMATION

SYSTEM DESIGN

INTEGRATION INTO SYSTEM

ORDERING INFORMATION

Preliminary check	 Check electrical power supply: Phase order: For LLZ compressors equipped with an electronic module, reverse rotation will be automatically detected. For more details refer to section "Motor protection". 	• Voltage and voltage unbalance within tolerance: For more details refer to section "Motor voltage".
Initial start-up	 Surface sump heaters must be energized at least 8 hours in advance to remove refrigerant. A quicker start-up is possible by "jogging" the compressor to evacuate refrigerant. Start the 	compressor for 1 second, then wait for 1 to 2 minutes. After 3 or 4 jogs the compressor can be started. This operation must be repeated for each compressor individually.
System monitoring	 The system must be monitored after initial startup for a minimum of 60 minutes to ensure proper operating characteristics such as: Correct superheat and subcooling. Current draw of individual compressors within acceptable values (max operating current). No abnormal vibrations and noise. Correct oil level. 	If Oil Top-up is needed, it must be done while the compressor is idle. Use the schrader connector or any other accessible connector on the compressor suction line. Always use original Danfoss POE oil 160SZ from new cans. For more detailed information see "Lubricants filling in instructions for Danfoss Commercial Compressors"TI 2-025-0402.

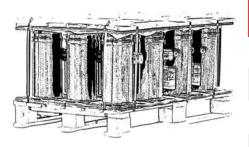
<u>Danfoss</u>


Danfoss recommends that compressors and compressor oil should be recycled by a suitable company at its site.

Single pack

Compressors are packed individually in a cardboard box. They can be ordered in any quantity. Minimum ordering quantity = 1.

As far as possible, Danfoss will ship the boxes on full pallets of 9 compressors according below table.



Compressor model	Length (mm)	Width (mm)	Height (mm)	Gross weight (kg)
LLZ013	1169	965	730	460
LLZ015	1169	965	730	460
LLZ018	1169	965	730	468
LLZ024	1169	965	775	495
LLZ034	1169	965	817	544

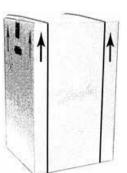
Note : Here including 9 single pack compressors

Industrial pack

Compressors are not packed individually but are shipped all together on one pallet. They can be ordered in quantities of full pallets only, multiples of 12 compressors, according below table.

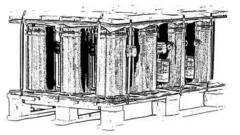
Compressor model	Nbr*	Length (mm)	Width (mm)	Height (mm)	Gross weight (kg)	Static stacking pallets
LLZ013	12	1170	815	665	538	3
LLZ015	12	1170	815	665	538	3
LLZ018	12	1170	815	665	550	3
LLZ024	12	1170	815	720	586	3
LLZ034	12	1170	815	817	651	3

<u>Danfoss</u>


Ordering codes

Compressor code numbers

Danfoss scroll compressors LLZ can be ordered in either industrial packs or in single packs. Please


use the code numbers from below tables for ordering.

Single pack

Compressor	Model Variation	Connections	Features	Evolution	Voltage Code 2	Voltage Code 4	Voltage Code 9
LLZ013	т	Q	9	А	121L9545	121L9535	121L9555
LLZ015	т	Q	9	А	121L9547	121L9537	121L9557
LLZ018	Т	Q	9	А	121L9549	121L9539	121L9559
LLZ024	Т	Q	9	А	121L9551	121L9541	121L9561
LLZ034	т	Q	9	А	121L9553	121L9543	121L9563

Industrial pack

Compressor	Model Variation	Connections	Features	Evolution	Voltage Code 2	Voltage Code 4	Voltage Code 9
LLZ013	Т	Q	9	А	121L9544	121L9534	121L9554
LLZ015	Т	Q	9	А	121L9546	121L9536	121L9556
LLZ018	т	Q	9	А	121L9548	121L9538	121L9558
LLZ024	Т	Q	9	А	121L9550	121L9540	121L9560
LLZ034	т	Q	9	А	121L9552	121L9542	121L9562

INTEGRATION INTO SYSTEM

A

Crankcase heater

Q	\leq				
Туре	Code No	Description	Application	Packaging	Pack Size
	120Z5040	Belt type crankcase heater, 70 W, 240 V, UL, CE mark		Multipack	4
	120Z5041	Belt type crankcase heater, 70 W, 400/460 V, UL, CE mark		Multipack	4
	120Z5042	Belt type crankcase heater, 70 W, 575 V, UL, CE mark	All models	Multipack	4
	120Z0059	Belt type crankcase heater, 65 W, 230 V, UL, CE mark		Multipack	6
	120Z0060	Belt type crankcase heater, 65 W, 400 V, UL, CE mark		Multipack	6

Discharge temperature protection

Туре	Code No	Description	Application	Packaging	Pack Size
	7750009	Discharge thermostat kit	All models	Multipack	10
	7973008	Discharge thermostat kit	All models	Industry pack	50

Magnetic discharge non return valve

Туре	Code No	Description	Application	Packaging	Pack Size
	120Z5046	Magnetic discharge non return valve	All models	Multipack	6

Lubricant

	And the second s
	THE OWNER OF
Manager	e l
160 SZ	
State State	
THERE	

Туре	Code No	Description	Application	Packaging	Pack Size
	120Z0648	POE lubricant, 215PZ(RL46HB),1 litre can	All models	Multipack	12

Rotolock nuts

			Qo	
Code n°	Description	Application	Packaging	Pack size
8153122	Rotolock nut, 1″	Models with 1" rotolock connection	Multipack	10
8153123	Rotolock nut, 1″1/4	Models with 1"1/4 rotolock connection	Multipack	10
8153124	Rotolock nut, 1"3/4	Models with 1"3/4 rotolock connection	Multipack	10
8153126	Rotolock nut, 2″1/4	Models with 2"1/4 rotolock connection	Multipack	10

<u>Danfoss</u>

Pack Size

1

1

Packaging

single

single

Application

LLZ013/015/018

LLZ024/034

Accessories

Mounting kit

Туре

Code No

120Z0663

Description

Mounting kit for 1 scroll compressor including 4 grommets, 4 sleeves, 4 bolts, 4 washers, rotolock connection kit for suction, discharge and economizer

fitting for 1 scroll compressor including 3 Teflon seals, 2 nuts, 3 sleeves.

Mounting kit for 1 scroll compressor including 4 grommets, 4 sleeves, 4 bolts, 4 washers, rotolock 120Z0662 connection kit for suction, discharge and economizer fitting for 1 scroll compressor including 3 Teflon seals, 2 nuts, 3 sleeves.

Туре	Code No	Description	Application	Packaging	Pack Size
	120Z5052	Acoustic hood for scroll compressor	LLZ013-015-018	Single pack	1
	120Z5053	Acoustic hood for scroll compressor	LLZ024	Single pack	1
	120Z5055	Acoustic hood for scroll compressor	LLZ034	Single pack	1

Terminal box

Туре	Code No	Description	Application	Packaging	Pack Size
	120Z5018	Square terminal box (C & Q version)	C and Q version	Multipack	10

IP54 upgrade kit

Туре	Code No	Description	Application	Packaging	Pack Size
	118U0057	IP54 upgrade kit	All models	Multipack	6

INTEGRATION INTO SYSTEM